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Abstract—The pupil diameter (PD), controlled by the auto-
nomic nervous system, seems to provide a strong indication
of affective arousal, as found by previous research, but it has
not been investigated fully yet. In this study, new approaches
based on monitoring and processing the PD signal for off-
line and on-line ‘‘relaxation’’ vs. ‘‘stress’’ differentiation are
proposed. For the off-line approach, wavelet denoising,
Kalman filtering, data normalization, and feature extraction
are sequentially utilized. For the on-line approach, a hard
threshold, a moving average window and three stress
detection steps are implemented. In order to use only the
most reliable data, two types of data selection methods
(paired t test based on galvanic skin response (GSR) data and
subject self-evaluation) are applied, achieving average clas-
sification accuracies up to 86.43 and 87.20% for off-line and
72.30 and 73.55% for on-line algorithms, with each set of
selected data, respectively. The GSR was also monitored and
processed in our experiments for comparison purposes, with
the highest classification rate achieved being only 63.57%
(based on the off-line processing algorithm). The overall
results show that the PD signal is more effective and robust
for differentiating ‘‘relaxation’’ vs. ‘‘stress,’’ in comparison
with the traditionally used GSR signal.
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INTRODUCTION

In the field of psychophysiology, some relevant
physiological signals, which are controlled by the

autonomic nervous system (ANS), have been chosen to
reflect the inherent activity of the nervous system. The
ANS is the regulator and coordinator of important
bodily activities below the level of consciousness,
including digestion, body temperature, blood pressure
(BP), and many aspects of emotional behavior.6 Two
branches of the ANS are the sympathetic nervous
system (SNS) and the parasympathetic nervous system
(PSNS). The SNS activities may include increased
heart rate, BP, sweating, cardiac output, and respira-
tion changes that enhance a fight-or-flight reaction.6,18

On the other hand, the function of the PSNS is asso-
ciated with the relaxation of the body and its activation
promotes a return of several organs to regular func-
tion. Activation of the PSNS may slow the heart rate,
promote peristalsis, increase salivary secretions, and so
on. Although the SNS and the PSNS have contrasting
functions, their activities are integrated and not nec-
essarily antagonistic.6,18

‘‘Relaxation’’ vs. ‘‘stress’’ of the human beings, which
have been studied by previous researchers,2,4,5,21,25,26

involve observable manifestations of activations of the
SNS and the PSNS. In the context of human–computer
interaction stress is often found defined along the lines
of H. Selye’s conceptualization of stress. For example,
Healey and Picard13 indicate, citing Selye: ‘‘Historically,
stress has been defined as a reaction from a calm state to
an excited state for the purpose of preserving the integ-
rity of the organism. For an organism as highly devel-
oped and independent of the natural environment
as socialized man, most stressors are intellectual, emo-
tional, and perceptual.’’ This proposed definition of
stress reveals the close relationship that stress may
havewith cognitive processes, as an increase in cognitive
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demandsmay cause an individual to become stressed. In
contrast, relaxation means a tension-free state in which
internal conflicts and disturbing feelings of anxiety, an-
ger, and fear are eased and a state of tranquility pre-
vails.22 In any case, stress can be damaging to the well
being of the individual. Recent research has demon-
strated that not only severe stress, lasting weeks or
months, but also the short-term stress (as little as few
hours) can impair cell communication in the brain,36 and
therefore, would be important to detect early on. Fur-
thermore, automated stress detection may enhance
security (for example, in banks or airports) or help in
criminal investigations (for example, use of the poly-
graph, based on the stress experienced by someone who
lies).

In the past many physiological signals, which can
reflect ANS reactions,12 have been used to assess the
‘‘relaxation’’ vs. ‘‘stress’’ of the human beings, such as
electrocardiogram (ECG), BP, skin temperature (ST),
galvanic skin response (GSR), blood volume pulse
(BVP), etc. More recently, the pupil size was verified by
Partala and Surakka20 as an evident indication of
affective arousal in their auditory emotional stimula-
tion experiment. Similarly, our own group explored the
feasibility of monitoring multiple physiological signals,
such as GSR, BVP, ST, including pupil diameter (PD),
for non-invasive stress detection in computer users,39

developing a system that combined 11 features derived
from the 4 signals. This system achieved an average
accuracy of 85.59%, across three different classifica-
tion algorithms, on a strictly off-line basis. These re-
sults began to indicate the high potential of PD as an
indicator of arousal. However, the efficiency and the
robustness of the PD variation monitoring for differ-
entiation between ‘‘relaxation’’ and ‘‘stress’’ have not
been fully explored yet. The pupil, which can constrict
to 1.5 mm in diameter or dilate to about 8–9 mm, is
the opening through which light enters the eye and
begins the process of visual perception.3 The diameter
of the human pupil is controlled by two opposing sets
of muscles in the iris, the sphincter, and dilator
pupillae, which are governed by the SNS and the PSNS
of the ANS.3 If the SNS is activated (e.g., due to
stress), the size of PD tends to increase; whereas if the
PSNS dominates (e.g., during relaxation), the PD will
remain small.1,10,28,29,37

In our study, the PD signal, obtained with an eye
gaze tracking system, which has become a robust and
intuitive tool for human–computer interaction,15 was
chosen to be monitored for affective sensing in a non-
invasive way. The GSR is one of the commonly used
physiological signals to detect stress, fear, lying, anxi-
ety, and arousal as these events tend to make the sweat
glands more active and this lowers the skin’s resis-
tance.17,23 Therefore the GSR signal was also mea-

sured and analyzed in order to compare the efficiency
of our proposed off-line and on-line approaches for
stress detection of a human subject based on the PD
signal.

METHODS

Experiment Setup

In our experiment, PD and GSR signals were
monitored in order to detect the emotional change
(‘‘relaxation’’ vs. ‘‘stress’’) of a human subject. In
addition, as the intensity of light is another primary
factor affecting the pupillary constriction and dilation,
the Illumination Intensity (IL) in the environment was
also measured and recorded.

The ‘‘Stroop color-word interference test’’
(SCWT)30 was used to elicit mild mental stress in the
experimental subjects during controlled intervals with
the aim of recognizing the ‘‘relaxation’’ and ‘‘stress’’ of
the subject based on identifying PD and GSR signal
variations. Previously, the SCWT has been applied by
several research groups as the way to elicit stress in
experimental subjects.14,31,35,39 Tulen et al.35 evaluated
the SCWT as a test for the study of stress-induced
sympathetic effects, on the basis of psychological,
physiological, and biochemical responses. They dem-
onstrated that the SCWT can induce increases in
plasma and urinary adrenaline, heart rate, respiration
rate, electrodermal activity, electromyography, feelings
of anxiety, and decreased finger pulse amplitude. In
addition, Hjemdahl et al.14 studied the sympatho-
adrenal and hemodynamic responses to mental stress
induced by the SCWT, which increased heart rate and
BP by 28 beats/min and 29/14 mmHg for the subjects,
on average. Further, Sun et al.31 utilized the SCWT as
the psychological or cognitive stressor to introduce an
emotional response, and simultaneously measured the
GSR and ECG data to assess the ‘‘stress’’ affective
state of the subject. These studies have used the SCWT
to elicit stress in experimental subjects, which was also
the goal in our study. However, as noted, earlier, the
specific form of stress elicited by SCWT may not be
separate from a simultaneous increase in the cognitive
demands placed on the subject. Therefore, the obser-
vations made in our work must be understood in the
specific frame of responses to intellectual stressors, to
which SCWT belongs.

In the test, a word with the font color that may
(‘‘congruent’’) or not (‘‘incongruent’’) match its
meaning was presented to the subject, as shown in
Fig. 1. The subjects needed to read aloud the word
presented first and then were required to click one of
the five screen buttons to indicate the font color of the
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word within 3 s, otherwise the system would auto-
matically display the next word. There were 45 con-
secutive word presentations in each congruent segment
and 30 consecutive word presentations in each incon-
gruent segment.

Figure 2 shows the stimuli schedule in this experi-
ment from the beginning of the session to its end. In
total, the experiment includes three consecutive sec-
tions. The aim of our study was to analyze PD and
GSR signals and their changes from ‘‘relaxation’’ to
‘‘stress,’’ therefore it was essential to mark the
boundaries of the C and IC segments in the data. For
this purpose, when one of the C, IC, or RS (respec-
tively) segments started, bursts of sinusoidal tones were
output through the sound system of the computer
following a binary encoding (01, 10, or 11), as shown in
Fig. 2. The luminance intensity remained constant
except in the segments IC2 and C3, where the illumi-
nation was temporarily increased (marked as ‘‘VI’’ in
Fig. 2). The experimental setup included measurement
of the PD, GSR, and IL signals. The visual stimuli for
the subject (Stroop color word presentations) were
displayed on the TOBII T60 eye tracker monitor.
TOBII T60 is robust, being able to operate in a wide
range of head movement. This provides a distraction-
free test environment that ensures natural behavior,
and therefore realistic results. The high level of per-
formance of this type of eye gaze trackers has been
evaluated by other research groups.19,38 Specifically,
Klingner16 has found that a similar TOBII remote eye
tracker (TOBII model 1750) measures mean binocular
PD with precision of 0.10 mm. In addition, before
starting the experiment, each subject must go through
two preliminary procedures for confirming eye track-
ing functionality (verify that the eye tracking system
can detect both eyes of the subject) and calibration
(9-point calibration procedure, which can allow certain
level of tolerance for small head movements of the
subject). The TOBII system measured the PD values 60
times per second. For use in the off-line study, the
relevant variables from the eye tracking system (in this

case, the PD of both eyes and their validity code) were
stored at the frequency of 60 Hz and, later, read into
MATLAB�. In addition, the subject had the GSR
sensor (GSR 2, from Thought Technology) attached to
his/her left hand and the IL sensor (BS500B0F photo-
diode, from Sharp) on his/her forehead, above the
eyes. These signals, together with the left and right
audio output (to provide the corresponding time
stamping in the experiment) were recorded and con-
verted to a MATLAB-readable data file directly at a
rate of 360 samples/s, using a multi-channel MCC
DAQ system (PCI-DAS6023 board). Later, for use in
the off-line study, these data were down-sampled by
six, to establish the same sampling rate of 60 samples/s
for all measured signals. For the on-line stress detec-
tion algorithm, a buffer of data was captured while,
simultaneously, the previous buffer of data was pro-
cessed.

The experimental sequence shown in Fig. 2 attempts
to expose each subject to alternating states of absence
and then presence of our stressor stimulus (the incon-
gruence of SCWT word presentations in the ‘‘IC’’
segments of the protocol), keeping all other parameters
of the test environment (e.g., position of the subject
and the display, overall brightness of the images dis-
played in the monitor, etc.) and the functional char-
acteristics of the subject (his/her age, visual
performance, etc.) constant. We also tried to minimize
changes in those functional characteristics that could
be introduced by habituation or fatigue. These pre-
cautions represent our best effort to minimize the im-
pact of other causes of PD change (e.g., light and dark
adaptation, fixation, accommodation, etc.) That is,
while we were not able to ensure the elimination of
these other events, we have attempted to minimize
their potential impact in our study by fostering their
(approximately) equal presence (or absence) during the
exposure of each of our subjects to the two conditions
that we are studying: congruent (C) and incongruent
(IC) Stroop stimulation. Further, we have attempted
to minimize the impact of inter-subject variability of

FIGURE 1. Samples of the Stroop test interface. The left panel shows a ‘‘congruent’’ word presentation (word ‘‘pink’’ in pink font).
The right panel shows an ‘‘incongruent’’ word presentation (word ‘‘pink’’ in green font).
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those extraneous factors in our off-line processing
approach by normalizing the preprocessed PD signal
to the same range of [21 1], before feature extraction.

The experiment involved 42 individuals (23 male, 19
female), with ages ranging from 20 to 50 (mean 27.5;
SD 5.14), and from diverse professional and ethnic
backgrounds. Subjects were asked if they had any
problems with color vision and none of them reported
any. It should be noted that our experiment was ap-
proved by the Institutional Review Board of Florida
International University. In the experiments performed
for this study, the participant was asked to remain
seated in front of the TOBII screen, interacting with
the Stroop Test program for about 30 min. All the
normal lights in the room were kept on, and an addi-
tional level of illumination provided by a desk lamp
placed above the eye level of the subject was also
switched on during the IC2 and C3 segments (as shown
in Fig. 2) in order to explore the robustness of our
stress detection algorithm to illumination intensity
variations in the environment. In the IC2 segment the
increase of the light intensity would inhibit the dilation
of the PD caused by stress, whereas in the C3 segment
the increase of the light intensity would further pro-
mote the contraction of the PD caused by the relaxa-
tion of the human subjects.

Development of Off-line Physiological Signal Processing
Algorithm

Previous research efforts in the area of pupillometry
have resulted in traditional processing approaches
applied to the PD signal.24 However, we sought to
develop alternative processing approaches meant to

preserve specifically the aspects of the PD signal that
we found to be more relevant to the differentiation
between stress and relaxation, in order to facilitate the
feature extraction step of our method. In our study, the
combined implementation of wavelet denoising and
Kalman filtering is the main signal processing method
applied to the original PD data, after the removal of
the eye blinks by linear interpolation (eye blinks are
signaled by a value of ‘‘4’’ in the validity code from the
TOBII system). Figure 3 shows a set of signals
(including the raw PD signal, the IL signal, and the
raw GSR signal) recorded from one subject during the
experiment. The first plot of Fig. 4 (upper trace) shows
the PD signal after blink and artifact removal, which is
called the ‘‘original PD signal’’ in this paper. It should
be noted that, although the linear interpolation re-
moves the blinking artifacts, a substantial amount of
fast variability still remains, which is not likely to
represent pupil size changes due to affective variations.
Furthermore, previous research9 has indicated that
these fast variations in the PD signal could be due to
quantization noise in the PD measurement.

Wavelet denoising seems to be a proper approach to
remove the abrupt changes in the original PD signal.
There are three main steps for wavelet denoising.34 The
multiresolution analysis (MRA) makes use of the dis-
crete wavelet transform (DWT) with the dilated and
translated versions of the mother wavelet. In MRA,
function scaling is performed to create a series of
approximations of the signal and the versions of the
wavelet are used to encode the difference in informa-
tion between different approximations. The subspaces
spanned by the scaling function at low scales are nested
within those spanned at higher scales. Therefore, we
can use the recursive algorithm for wavelet signal
decomposition by implementing low/high-pass filters
and the down-sampling operation to result in levels of
approximation and detail coefficients. In our study, the
Daubechies wavelet and nine decomposition levels
were applied to the original PD signal. The second step
is to select a proper threshold method to best remove
the noise by altering the values of the detail coeffi-
cients. In our research, the Birge–Massart strategy, a
method based on adaptive functional estimation in
regression or density contexts, is used to set the level-
dependent threshold for denoising. The last step is to
apply the inverse DWT on the approximation coeffi-
cients and the altered detail coefficients to obtain the
denoised signal, shown in the second plot of Fig. 4.

Although the application of wavelet denoising to
the original PD signal achieves significant improve-
ment in clearing the signal, there are still some abrupt
changes that remain. Kalman filtering is utilized as the
second step to remove the noise that remained in the
PD signal. Kalman filtering, which is a recursive data

FIGURE 2. Stimuli schedule of the experimental protocol.
‘‘IS’’—the introductory segment to let the subject get used to
the task environment, in order to establish an appropriate
initial level for his/her psychological state, according to the
law of initial values (LIV); ‘‘C’’—the congruent segment,
comprising 45 Stroop congruent color word presentations
(font color matches the meaning of the word), which are not
expected to elicit significant stress in the subject; ‘‘IC’’—the
incongruent segment, in which the font color and the meaning
of the 30 words presented differ, which is expected to induce
stress in the subject; ‘‘RS’’—a resting segment to let the
subject return to a baseline affective arousal, not having to
perform any action, during 1 min. The physiological signals
are also monitored.
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processing algorithm, generates optimal estimates of
desired quantities given a set of measurements. The
algorithm works in two steps: in the prediction part,
the Kalman filtering uses initial conditions and models
to produce estimates of the current state variables,

along with their uncertainties. After observation of the
next measurement, the correction step is implemented.
The estimated variables are updated based on con-
structing a mean squared error minimizer in order to
ensure that the prediction variances are minimized.11

0 50 100 150 200 250 300 350 400 450
2

4

6

Time (s)

P
u

p
il 

D
ia

m
et

er
 (

m
m

)

0 50 100 150 200 250 300 350 400 450

1.8

2

2.2

Time (s)

G
S

R
 A

m
p

lit
u

d
e

0 50

C1 IC1 C2 IC2 C3 IC3

C1 IC1 C2 IC2 C3 IC3

C1 IC1 C2 IC2 C3 IC3

100 150 200 250 300 350 400 450
0.2
0.4
0.6
0.8

1
1.2

Time (s)

Ill
u

m
in

at
io

n
 In

te
n

si
ty

FIGURE 3. A set of signals after synchronization. From top to bottom: the raw PD, the raw GSR, and IL. The vertical lines are the
segment transition boundaries. The most important three boundaries are those that separate each congruent Stroop segment (C)
from the incongruent Stroop segment (IC) that follows.
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The PD signal after Kalman filtering is illustrated in
the lower plot of Fig. 4.

The preprocessed PD signal is then normalized to
the range [21 1] because different subjects have dif-
ferent baseline PD signal levels. Then key features are
extracted from the filtered PD signal. The GSR signal
recorded during the protocol was preprocessed by a
64-order low-pass FIR filter (1.066 s buffer) with a
cutoff frequency at 2 Hz. for the purpose of removing
recording noise and artifacts.8 Table 1 shows three
features respectively extracted from the PD and GSR
Signals. Table 2 illustrates three different classification
phases (P1, P2, P3) for the purpose of evaluating the
efficiency of the PD signal, in comparison to the per-
formance of the GSR signal.

Development of On-line Physiological Signal Processing
Algorithm

The on-line system derives a representative point for
every short time interval of the preprocessed raw PD
signal, labeled as PDr, to achieve stress detection. In
the on-line processing algorithm, a hard threshold
setting for eye blink removal, which is denoted as
‘‘Thresholdblink,’’ and a moving average window
method are applied in order to obtain the PDr. This
threshold is applied to the PD signal at its original
scale, since we do not have the benefit of knowledge of
the complete data set (in the on-line algorithm we do
not involve the value of future samples) and we cannot,
therefore, normalize the signal. The moving average,
one of the most common signal processing methods, is
not only simple but it also produces ‘‘the lowest noise
possible for a given edge sharpness,’’27 which is suit-
able for the shape of the PD signal when it changes
from a congruent (C) to an incongruent segment (IC).
Originally, the sampling rate of the raw PD signal is
60 Hz. It is neither necessary nor practical to classify
every PD signal sample for stress detection. Therefore,
60 samples, namely a time span of 1 s, were selected as
window length to achieve one PDr value per interval.
Due to the presence of eye blinks, a hard threshold
must be set (‘‘Thresholdblink’’). The detailed algorithm
is presented below:

m ¼ 0; ð1Þ

If PDðiÞ � Thresholdblink X ið Þ ¼ PDðiÞ; m

¼ mþ 1 60� n� 59 � i � 60� n n ¼ 1; 2; . . .ð Þ;
ð2Þ

If PDðiÞ<Thresholdblink X ið Þ ¼ 0

60� n� 59 � i � 60� n n ¼ 1; 2; . . .ð Þ;
ð3Þ

PDrðnÞ ¼ X 60� n� 59ð Þ þ X 60� n� 58ð Þ½
þ � � � þ Xð60� nÞ�=m; ð4Þ

where n is the number of the 1-s window being con-
sidered (which will be assigned as the index of the
resulting PDr sample), i is the original PD sample
number counted from the first sample of the first 1-s
window involved in the analysis, and m counts the
number of PD samples with value greater than or
equal to Thresholdblink, in a given 1-s window. Figure 5
shows the preprocessed PD signal after use of a hard
threshold (for the removal of the eye blinks) and the
application of a moving average window. It can be
seen in Fig. 5 that while the length of the original PD
signal in a typical record is about 28,800 samples, the
preprocessed signal is just about 480 data points (PDr).

The next step is differentiating between relaxation
and stress. For this analysis, themost important parts of
the waveform in the PDr signal are the large sudden
increases and the large sudden decreases, which appear
in the emotional transitions from ‘‘relaxation’’ to
‘‘stress’’ and from ‘‘stress’’ to ‘‘relaxation,’’ respectively.
In this step, there are three sub-steps for identifying
‘‘relaxation’’ and ‘‘stress,’’ which are preparation, fea-
ture-based decision voting and ‘‘relaxation’’/‘‘stress’’
indication.

Sub-step 1 (Preparation) The PD can constrict to
1.5 mm or dilate to about 8–9 mm. In addition, dif-
ferent individuals have different PD values even under
the same experimental conditions. Hence, it is rea-
sonable and necessary to calculate the mean value of
PD during a certain period of time when each subject is
relaxed as the reference baseline for that subject. In our

TABLE 1. Features obtained from the PD and GSR signals.

Signal Features Definition

PD (3 features) PDmean Average value of the PD signal in a segment

PDmax Maximum value of the PD signal in a segment

PDWalsh Difference value between the first and the second Walsh coefficient after Walsh

transform based on the PD signal during the onset of each Stroop segment

GSR (3 features) GSRmean Mean value of the amplitude of each GSR response in a segment

GSRrisingTime (Average) rising time of each GSR response in a segment

GSRnum Number of the GSR responses in a segment
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experiment, during the first introductory section (see
Fig. 2), the mean value of twenty PDr points is calcu-
lated as the PDReference Value for the definition of
appropriate thresholds. In addition, two thresholds are
needed for stress detection, which are respectively
regarded as the upper limit of the PDr signal amplitude
fluctuation during the ‘‘relaxation’’ intervals and the
lower limit of the PDr signal amplitude fluctuation
during the ‘‘stress’’ intervals. These are denoted as
‘‘Thresholdrelaxation’’ and ‘‘Thresholdstress’’ respectively.
These two thresholds are calculated based on
PDReference Value, and two constants (k1 and k2, k1 > 1,
k2 > 1, k2 > k1. E.g., values defined empirically and
used were k1 = 1.02, k2 = 1.07) are also required. The
equations are shown below:

Thresholdrelaxation ¼ PDReference Value � k1 ðk1>1Þ;
ð5Þ

Thresholdstress ¼ PDReference Value � k2 ðk2>1Þ: ð6Þ

Sub-step 2 (Feature-based decision voting) Three
features are extracted to identify the PDr signal
change. Each feature has a different level of impor-
tance. If the current PDr signal value satisfies the cri-
terion of one feature, then the corresponding weight

score (‘‘weight stress’’ or ‘‘weight relaxation’’) will be
updated as indicated below.

The first criterion for the first feature detected is the
PDr signal amplitude testing.

If PDrðnÞ � Thresholdstress WeightstressðnÞ
¼WeightstressðnÞ þ 3;

ð7Þ

If PDr � Thresholdrelaxation Weightrelaxation ðnÞ
¼Weightrelaxation ðnÞ þ 3:

ð8Þ

This means that the ‘‘vote count’’ for one or the
other classification outcomes (stress or relaxation) will
be increased by 3 (voting) points according to this
criterion.

The second criterion for the second feature detected
is based on the modified backward difference method.
The kernel for traditional backward differentiation of
a sequence can be given as [21 1], which is denoted as
KBackward: Figure 6 illustrates the results after the
convolution of KBackward with a pair of segments (one
congruent segment and one incongruent segment) of
one subject’s PDr signal. In Fig. 6, the second vertical
line denotes the expected affective transition of the
human subject from ‘‘relaxation’’ to ‘‘stress’’; whereas

TABLE 2. Classification phases (different conditions).

Phase Description

P1 Using all features extracted from the monitored PD and GSR signals (all six features are used for classification)

P2 Excluding the features extracted from the PD signal (only three features from GSR)

P3 Excluding the features extracted from the GSR signal (only three features from PD)
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the third vertical line indicates an expected affective
transition of the human subject from ‘‘stress’’ to
‘‘relaxation.’’ The short time periods immediately after
affective transitions are critical for the performance of
the system. However, as we can see from Fig. 6, in
these two short time periods, right after the second and
the third vertical lines, just a few points show a slightly
different pattern compared with the rest of the values.
In other words, the traditional first order backward
differentiation operator can not effectively identify the
sudden change of the PDr signal. Therefore, in our
study, the modified backward differential kernel
KModifiedBackward is implemented, which is given as [21 0
0 0 1]. Figure 7 shows the results after the convolution
of KModified Backward with the same pair of segments of
the PDr signal as Fig. 6. It is evident from the results
that at the beginning of the incongruent segment, there
are four consecutive points with large positive values
(slightly larger than 0.3), whereas after the incongruent
segment, there are six consecutive points with large
negative values (slightly less than 20.3). However, in
other time intervals, the calculated results are not often
consecutively larger than 0.3 or less than 20.3, which
shows the noticeable contrast with the relatively large
calculated values mentioned above. Therefore, accord-
ing to the amplitude and the continuity of these calcu-
lated values obtained by convolution with
KModified Backward; it could be inferred that the PDr signal
has significant changes during those time intervals,
which implies that the computer user’s state is varying
from ‘‘relaxation’’ to ‘‘stress’’ or from ‘‘stress’’ to
‘‘relaxation’’ at those times. These changes are detected,
algorithmically, performing the following calculations.

(1) Calculate the DPMBs. Five DPMB values are
based on the current and the previous PDr values,

which can consequently represent the overall PDr sig-
nal amplitude variation in a short period.

DPMBðiÞ ¼ 1� PDrðnþ 1� iÞ � 1� PDrðn� i� 3Þ
ði ¼ 1; 2; 3; 4; 5Þ: ð9Þ

(2) Calculate the number of DPMB greater than the
absolute value of ThresholdMB

Num1 ¼ 0; ð10Þ

If DPMBðiÞ>ThresholdMB Num1

¼ Num1þ 1 ði ¼ 1; 2; 3; 4; 5Þ;
ð11Þ

Num2 ¼ 0; ð12Þ

If DPMBðiÞ<�ThresholdMB Num2 ¼ Num2

þ 1 ði ¼ 1; 2; 3; 4; 5Þ:
ð13Þ

(3) Modify the weight for ‘‘relaxation’’ or ‘‘stress’’
affective assessment

If Num1 � 3 WeightstressðnÞ ¼WeightstressðnÞ þ 1;

ð14Þ

IfNum2� 3WeightrelaxationðnÞ ¼WeightrelaxationðnÞ þ 1:

ð15Þ

The third criterion is based on shape information
detection methods, supported on concepts from
mathematical morphology. In mathematical morpho-
logical operations, a structuring element is operated on
the original signal or image in order to extract the
shape information. In a morphological operation, the
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FIGURE 6. The results after the convolution of KBackward with a pair of segments of the PDr signal.
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value of each point (pixel) in the output signal (image)
is based on a logical transformation, which depends on
the comparison of the point (pixel) neighborhood in
the input signal (image) with a pattern. By choosing
the size and the shape of a structuring element, the
researcher can construct a different pattern. In addi-
tion, there are two types of basic morphological
operations, which are erosion and dilation. Erosion is
the operation that outputs the maximum value of all
the points (pixels) in the neighborhood of the input
value (pixel) after the transformation; whereas dilation
is the operation that outputs the minimum value of all
the points (pixels) in the neighborhood of the input
value (pixel) after the transformation.

Figure 8 shows the results of the same pair of seg-
ments of the PDr signal as Fig. 7 after processing with
the dilation and erosion operations. As shown in
Fig. 8, the solid line, the upper edge of the cluster of
PDr signal points, is the result after modified dilation
operation processing; whereas the dashed line, the
lower edge of the cluster of PDr signal points, is the
result after modified erosion operation processing. It is
apparent from Fig. 8 that when the PDr signal has
significant increases, the stem points are almost con-
secutively on the solid line; whereas when the PDr

signal has significant decreases, the stems are almost
consecutively on the dash line. Therefore, these
observations suggest that the location of clusters of
stems on the solid line or on the dashed line could
indicate a significant amplitude increase or decrease in
the PDr signal. For a certain PDr signal decision
making process, the current PDr value and its previous
neighboring PDr values are all considered, which can
reveal the shape of PDr signal within a short period of
time. The detailed algorithm is proposed below:

(1) Calculate the number of ‘‘morphologically
matched points’’

Numdilation ¼ 0; ð16Þ

If PDrðn� iÞ ¼ max½PDrðn� iÞ;PDrðn� i� 1Þ;
PDrðn� i� 2Þ;PDrðn� i� 3Þ;PDrðn� i� 4Þ�
ði ¼ 1; 2; 3; 4; 5Þ; ð17Þ

Numdilation ¼ Numdilation þ 1: ð18Þ

Similarly,

Numerosion ¼ 0; ð19Þ

If PDrðn� iÞ ¼ min½PDrðn� iÞ; PDrðn� i� 1Þ;
PDrðn� i� 2Þ; PDrðn� i� 3Þ; PDrðn� i� 4Þ�
ði ¼ 1; 2; 3; 4; 5Þ; ð20Þ

Numerosion ¼ Numerosion þ 1: ð21Þ

(2) Modify the weight for ‘‘relaxation’’ or ‘‘stress’’
affective assessment

If Numdilation � 3 WeightstressðnÞ ¼WeightstressðnÞ þ 1;

ð22Þ

If Numerosion � 3 WeightrelaxationðnÞ
¼WeightrelaxationðnÞ þ 1:

ð23Þ

Sub-step 3 (‘‘relaxation’’/‘‘stress’’ indication) The
purpose of this sub-step is to provide an indication of
the state of stress or relaxation of the subject for each
PDr point.
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FIGURE 7. The results after the convolution of KModified Backward with the same pair of segments of the PDr signal as in Fig. 6.
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� If WeightstressðnÞ � 4 and the previous PDr

point is detected as ‘‘relaxation’’

The current PDr(n) is the key (upward) transition
point, which indicates that the subject is changing from
‘‘relaxation’’ to ‘‘stress.’’

� If WeightrelaxationðnÞ � 4 and the previous PDr

point is detected as ‘‘stress.’’

The current PDr(n) is the key (downward) transition
point, which indicates that the subject is changing from
‘‘stress’’ to ‘‘relaxation.’’

� Otherwise.

PDr(n) is not a transition point, which indicates that
the subject is at the same level of ‘‘relaxation’’ or
‘‘stress’’ as in the previous PDr point.

All the data manipulations described for the on-line
physiological signal processing algorithm were imple-
mented in custom Matlab scripts, running in the main
processor of a Windows personal computer.

Selection of Relevant Individual Data

While the SCWT was implemented in our experi-
ment for the purpose of eliciting mild mental stress in
the human subjects during controlled intervals, we
considered that it would be interesting to verify for
each subject and for each pair of C and IC segments
(denoted C/IC), whether the stimuli were effective in
producing a significant stress-related change, as
hypothesized. It is known that different individuals
may be more or less responsive to the application of

stressor stimuli, and we wished to guide the develop-
ment of our algorithms by using physiological data of
instances where the subject was, indeed, stressed.
However, a ‘‘golden standard’’ to define when a subject
was really stressed is not readily available for an
experimental environment like ours, and we had to
estimate the success of our stress elicitation method by
non-invasive, non-obtrusive methods that would not,
themselves, create unplanned stress in our subjects.

Toward this goal, two types of approaches were
applied. The first is the selection of relevant C/IC
segments pairs based on paired t-test analysis. The
GSR signal is one of the most commonly used physi-
ological signals for the purpose of gauging some degree
of stress affecting a human subject. Therefore, the
mean GSR value is calculated in each C segment and
in the following IC segment. Then a paired t-test is
utilized to determine whether these C/IC segment pairs
have significant increase change from ‘‘congruent’’ to
‘‘incongruent’’ SCWT presentations.

The second approach relied on the feedback pro-
vided by the subjects themselves, who were asked to
describe their reactions in a questionnaire. In order to
better understand the responses of the human subjects
to the SCWT experiment, we conducted an evaluation
that posed two questions, quantified with numerical
rating scales, to capture the subject’s self evaluation
immediately after the conclusion of the SCWT exper-
iment. Because emotion is very subjective and only the
subject has the epistemic authority to express it,32 the
collection of self-reports from subjects has been widely
used in the psychological and affective computing
research fields.33 In our questionnaire, two questions
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were posed: ‘‘How did you feel in the congruent seg-
ments?’’ and ‘‘How did you feel in the incongruent
segments?’’ An affective rating scale with five levels
(from ‘‘1’’ to ‘‘5’’) was listed under each question. The
subjects were also told that ‘‘1’’ represents that the
subject feels relaxed. ‘‘5’’ represents that the subject
feels very stressed just as if he/she could not find the
key of his/her house. ‘‘2,’’ ‘‘3,’’ and ‘‘4’’ represent
increasing, intermediate levels between ‘‘1’’ and ‘‘5.’’

RESULTS

Result of Selection of Relevant Individual Data Based
on Paired t-Test

In our study, 42 subjects volunteered to participate in
the experiment, so there are 126 pairs of mean GSR
values of data segments (3 ‘‘C’’ and 3 ‘‘IC’’ for each
subject). The difference of themeanGSRvalues between
each incongruent segment and the preceding congruent
segment was calculated and denoted as ‘‘DiffGSR-
mean.’’ The normality of these 126 ‘‘DiffGSRmean’’
values was first examined by the Kolmogorov–Smirnov
(K–S) test and Shapiro–Wilk (S–W) test,7 with signifi-
cance values of 0.200 and 0.446 respectively. This con-
firmed that the values of ‘‘DiffGSRmean’’ were
normally distributed. In fact, the ‘‘DiffGSRmean’’
population had a mean value of 0.093 with a standard
deviation of 0.326. Then the paired t-test (2-tailed) was
implemented and confirmed that, at a significance value
of 0.002 (t value: 3.218, df value: 125), the SCWT, gen-
erally, produced a change inGSRmean levels, which has
been linked to stress elicitation by previous research, as

outlined in the ‘‘Experiment Setup’’ section. Therefore,
we postulate that our protocol evoked more stress dur-
ing incongruent segments than during congruent seg-
ments. In the distribution of ‘‘DiffGSRmean’’ values,
the 90% confidence interval was [0.0453, 0.1414]. In
order to remove the C/IC segments pairs, in which the
stress elicitation may have been insufficient, the C/IC
segment pairs whose ‘‘DiffGSRmean’’ was less than
0.0453 were discarded from subsequent analysis. Hence,
a total of 70 pairs of C/IC segments (i.e., 140 segments)
was kept (under this selection method) as the data to be
used in the rest for the development of the off-line and
on-line algorithms.

Result of Selection of Relevant Individual Data Based
on Questionnaire

In our study, 42 subjects volunteered as participants
and answered the 2 questions outlined in the previous
section immediately after the experiment. The average
subjective ratings and standard deviations for the C
and IC segments were 1.1667 vs. 3.2857 (mean values)
and 0.4371 vs. 0.8348 (standard deviations), respec-
tively. It should be noted that, for all the participants,
the subjective assessment was higher (subject felt more
stressed) during the incongruent than during the con-
gruent segments, by at least 1, in a scale with a maxi-
mum of 5. However, in order to remove from
consideration C/IC pairs of experiments with poten-
tially insufficient stress elicitation, only data from
subjects whose difference evaluation score between
incongruent and congruent segments was greater than
or equal to two were retained. In this way, only data

TABLE 3. Results of stress detection by five types of classification algorithms (selected data based on the paired t-test).

Phase of classification

Classification algorithm (%)

Mean (%) Variance (%)K* (K-star) Multilayer perceptron Naı̈ve Bayes Random forest JRip

P1:6 features from PD and GSR 80.00 85.71 87.86 87.14 86.43 85.43 9.85

P2:3 features from GSR (no PD) 60.00 63.57 60.71 63.57 63.57 62.29 3.16

P3:3 features from PD (no GSR) 85.71 87.86 88.57 84.29 85.71 86.43 3.06

K* (K-star): This method is a refinement of the k-nearest-neighbor rule. It measures the distance between two instances using the entropic

theory, based on the probability of transforming one instance into another by randomly choosing between all possible transformations. The

probabilities for each category are calculated and the category with the highest probability is considered as the classification of the new

instance.

TABLE 4. Results of stress detection by five types of classification algorithms (selected data based on the questionnaire).

Phase of classification

Classification algorithm (%)

Mean (%) Variance (%)K* Multilayer perceptron Naı̈ve Bayes Random forest JRip

P1:6 features from PD and GSR 83.87 86.56 84.95 87.10 83.87 85.27 2.25

P2:3 features from GSR (no PD) 53.23 52.69 47.85 43.31 58.60 51.94 21.19

P3:3 features from PD (no GSR) 87.10 88.17 88.71 86.56 85.48 87.20 1.65
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from 31 subjects (i.e., including 93 congruent and 93
incongruent segments) were kept for off-line and on-
line affective processing, under this selection approach.

Stress Detection Based on Off-line Processing

In this section, five different classification algorithms
were applied to the features extracted fromPDandGSR
(see Table 1) in order to assess the ‘‘relaxation’’ vs.
‘‘stress’’ of the human subjects. Specifically, for our
work, we utilized the WEKA software, which can be
freely downloaded from http://www.cs.waikato.ac.nz/
ml/weka/. In addition, three classification phases
(P1, P2, and P3) were also performed, as illustrated in
Table 2, in order to compare the classification efficiency
of PD and GSR for stress detection.

From the selection of data (the pairs of C/IC
segments) made on the basis of the paired t-test, 70
congruent segments and 70 incongruent segments were
kept for analysis. In addition, in order to obtain a more
accurate and realistic assessment of the classifiers, a
10-fold cross validation method was used. The accuracy
rates from the experiments are shown in Table 3. From
the selection of data made on the basis of the question-
naire, 93 congruent segments and 93 incongruent seg-
ments were kept for analysis. In addition, a 6-fold cross
validation method was used. The accuracy rates from
the experiments are shown in Table 4.

Stress Detection Based on On-line Processing

The final accuracies of stress detection based on
the on-line processing (for the data sets chosen by the
two selection criteria we have outlined) are as follows:
for the 70 C/IC segments pairs data selected on the
basis of the paired t-test, the mean classification rate
is 72.30%. For the data from the 31 subjects selected
on the basis of the questionnaire or self-evaluation,
the mean classification rate is 73.55%. Predictably,
the mean classification accuracies from the simpler
on-line classification algorithm are below their coun-
terparts for the more elaborate off-line classification
algorithm, presented in Table 3. Interestingly, if the
on-line classification algorithm is used to process the
complete set of congruent and incongruent segments
recorded, i.e., without discarding any of the C and IC
segments, in an emulation of the unconstrained real-
time operation of this on-line system, the average
classification accuracy remains about the same, with a
value of 72.40%. As an example of how the method
should work, Fig. 9 shows the stress detection result
of one subject after on-line PD signal processing. It
should be noted that the output of the system was
only calculated for the congruent and incongruent
segments. The accuracy rate for the whole example is
98.69%, and the accuracy values achieved for each C/
IC segment pair, they are 100, 95.92, and 100%,
respectively.
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FIGURE 9. The on-line stress detection result for one subject. There are two traces in this figure. The upper trace is the pre-
processed PDr signal. The lower trace is the on-line stress detection result for the whole experiment. The negative outputs (stems)
with value 21 denote that at that time, the system indicates that the subject was relaxed; whereas the positive stems with value 1
indicate that the computer user is regarded as stressed at that time.
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DISCUSSION

In our experiment, the PD and GSR physiological
signals were collected and analyzed in order to inves-
tigate their efficiency and robustness for detecting the
‘‘relaxation’’ vs. ‘‘stress’’ of human subjects. We
developed off-line and on-line stress detection
approaches based on the PD signal.

For our off-line stress detection algorithm, the
outcomes are illustrated in Table 3 (for data selected
on the basis of the paired t-test) and Table 4 (for data
selected based on the questionnaire). Both tables show
that the three features extracted from the PD signal
reach highest accuracy levels of up to 86.43 and
87.20%, and minimum variance of 3.06 and 1.65%,
respectively (Phase 3). However, in the first phase of
both tables, the six features extracted from both PD
and GSR signals achieve only limited classification
success, which may imply that the classification capa-
bilities of PD and GSR cannot be combined to achieve
a higher detection rate, when using signal processing
methods similar to those used in this experiment. The
second phase of both tables further support this
assumption: the three features extracted from the GSR
signals reached the lowest classification averages (62.29
and 51.94%). All these observations suggest that the
PD is a robust and efficient physiological signal for
stress detection, especially in differentiating ‘‘relaxa-
tion’’ vs. ‘‘stress.’’

In the on-line stress detection algorithm, the feature-
based decision voting method is applied, which is
appropriate for a situation when individual features
are brought together in a group to solve a classification
problem. According to the idea of synergy, the global
decision achieved tends to be more effective and reli-
able than the decision made based on a single indi-
vidual feature. In our algorithm, each feature has
different significance levels. The consensus can be
achieved when the final voting score is greater than a
threshold score previously set.

Since our interest is to detect significant changes in
the PDr signal, the traditional backward differentiation
operator was implemented first, with the results shown
in Fig. 6. However, this approach did not yield par-
ticularly strong (positive or negative) outputs at the
boundaries of the IC segments, as we sought. There-
fore, the modified differentiation operator [21 0 0 0 1]
was used. This operator detects the difference between
the current value and the value 4 time steps back,
which reflects the local tendency of the PDr signal. If
large values with the same sign are detected succes-
sively in the results derived from the modified back-
ward differentiation operator, it is believed that the
PDr signal has undergone a significant change in this
interval of time. In an attempt to also consider shape

change information in the analysis of the PDr signal,
morphological methods were applied as part of the on-
line approach we implemented.

On the other hand, the GSR signal was also pro-
cessed, off-line, for comparison. The GSR signal is a
physiological signal widely used to detect emotional
variations of the human subjects. However, GSR
classification of both sets of selected data yields accu-
racy levels that are significantly lower than the accu-
racy of the on-line PD stress detection algorithm (62.29
vs. 72.30%; 51.94 vs. 73.55%).

It should be noted that the experimental protocol
included temporary increases in the illumination in the
field of view of the subjects during two of the six
experimental segments (IC2 and C3 Stroop segments),
to emulate the illumination variations that can occur
during ordinary computer use. In order to better
analyze the effect of illumination and affective changes
on PD variation, the difference of the average value of
PD signal for each incongruent Segment (IC1, IC2,
and IC3) from its corresponding congruent segment
(C1, C2, and C3) is calculated. These differences are
denoted as ‘‘dPD1,’’ ‘‘dPD2,’’ and ‘‘dPD3,’’ respec-
tively. The average values of ‘‘dPD1,’’ ‘‘dPD2,’’ and
‘‘dPD3’’ for all 42 subjects were found to be 0.7377,
0.5406, and 0.6050, respectively. The initial reduction
trend (from ‘‘dPD1’’ to ‘‘dPD2’’) could be explained in
terms of possible habituation of each subject to the C/
IC transitions. However, we observe that ‘‘dPD3’’ is
larger than ‘‘dPD2,’’ deviating from that trend. We
propose as an explanation for this that the increased
illumination in C3 further promotes the reduction of
pupil size expected in a congruent Stroop segment,
resulting in a larger differential for the third C/IC
segment pair. The illumination increase in IC2, on the
other hand, seems to have countered the increase of
pupil size expected in an incongruent Stroop segment,
yielding a small differential for the second C/IC seg-
ment pair.

Finally, the results of the ‘‘relaxation’’ vs. ‘‘stress’’
differentiation based on PD signal processing (around
86–87% for off-line analysis; around 72–73% for on-
line analysis), suggest that the methods developed to
process the PD signal are promising and the PD signal
is a valuable alternative for detecting ‘‘relaxation’’ vs.
‘‘stress’’ in comparison with the traditionally used
GSR signal.

The results of this study, as well as the discussion
offered in this section, reinforce the original speculation
that emerged when our group reported the possibility of
detecting affective changes through simultaneous mon-
itoring of multiple physiological signals. That early
work, however placed emphasis on the potential benefits
of concurrent analysis of the multiple signals, whereas
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the results we present in Table 3 indicate that the PD
signal may be a major contributor to the success of the
classification performed on the basis of multiple signals,
as processing with PD-derived features performed as
well as a system that considers features of both PD and
GSR. Two additional new steps forward from the pre-
vious work presented by Zhai and Barreto39 are the
experimentation with variable environmental illumina-
tion (Zhai and Barreto enforced a constant environ-
mental lighting during those experiments), and the
development of the on-line PD processing algorithm
included in this report, as the previous work had only
been develop for off-line application. Availability of an
on-line algorithm, capable of operation without
requiring knowledge of past and future samples of the
signals, and simple enough for viable real-time imple-
mentation in a DSP board is a key consideration for the
prospective use of PD-based affective sensing in stan-
dard computing systems.

ACKNOWLEDGMENTS

This work was sponsored by NSF grants HRD-
0833093 and CNS-0959985.

REFERENCES

1Andreassi, J. L. Psychophysiology: Human Behavior &
Physiological Response. Mahwah, NJ: Lawrence Erlbaum
Associates, 2007.
2Andren, J., and P. Funk. A case-based approach using
behavioural biometrics to determine a user’s stress level. In:
ICCBR Workshops, 2005, pp. 9–17.
3Beatty, J., and B. Lucero-Wagoner. Handbook of Psy-
chophysiology. Cambridge: Cambridge University Press,
2000.
4Begum, S., M. U. Ahmed, P. Funk, and N. Xiong. Using
calibration and fuzzification of cases for improved diag-
nosis and treatment of stress. In: 8th European Conference
on Case-Based Reasoning Workshop Proceedings, edited
by M. Minor, 2006, pp. 113–122.
5Cano-Vindel, A., J. J. Miguel-Tobal, H. Gonzalez-Ordi,
and I. Iruarrizaga-Diez. Hyperventilation and anxiety
experience. Anxiety Stress 13(2–3):291–302, 2007.
6Fellous, M., and M. A. Arbib. Who Needs Emotions? The
Brain Meets the Robot. New York: Oxford University
Press, 2005.
7Field, A. Discovering Statistics Using SPSS (3rd ed.). New
York: Sage, 2009.
8Gao, Y., A. Barreto, and M. Adjouadi. Monitoring and
Processing of the Pupil Diameter Signal for Affective
Assessment of a Computer User. Lecture Notes in Com-
puter Science (LNCS). LNCS 5610, 2009, pp. 49–58.
9Gao, Y., A. Barreto, and M. Adjouadi. Affective assess-
ment of a computer user through the processing of the
pupil diameter signal. In: Innovations in Computing Sci-
ences and Software Engineering, edited by T. Sobh, and K.
Elleithy. New York: Springer, 2010, pp. 189–194.

10Granholm, E., and S. R. Steinhauer. Introduction: Pupil-
lometric measures of cognitive and emotional processing.
Int. J. Psychophysiol. 52:1–6, 2004.

11Grewal, M. S., and A. P. Andrews. Kalman Filtering:
Theory and Practice Using MATLAB (3rd ed.). Hoboken,
NJ: Wiley-IEEE Press, 2008.

12Healey, J. Wearable and Automotive Systems for Affect
Recognition from Physiology. Ph.D. dissertation, MIT
Media Lab, 2000.

13Healey, J. A., and R. W. Picard. Detecting stress during
real-world driving tasks using physiological sensors. IEEE
Trans. Intell. Transp. Syst. 6(2):156–166, 2005.

14Hjemdahl, P., U. Freyschuss, A. Juhlin-Dannfelt, and B.
Linde. Differentiated sympathetic activation during mental
stress evoked by the Stroop test. Acta Physiol. Scand.
Suppl. 527:25–29, 1984.

15Holmqvist, K., M. Nystrom, R. Andersson, R. Dewhurst,
H. Jarodzka, and J. Weijer. Eye Tracking: A Comprehen-
sive Guide to Methods and Measures. Oxford: Oxford
University Press, 2011.

16Klingner, J. The pupillometric precision of a remote video
eye tracker. In: Proceedings of the 2010 Symposium on
Eye-Tracking Research Applications (ETRA ‘10). New
York: ACM, 2010, pp. 259–262.

17Lim, C. L., C. Rennie, R. J. Barry, H. Bahramali, I.
Lazzaro, and B. Manor. Decomposing skin conductance
into tonic and phasic components. Int. J. Psychophysiol.
24(2):97–109, 1997.

18Martini, F. H., and J. L. Nath. Fundamentals of Anatomy
& Physiology (8th ed.). San Francisco: Benjamin Cum-
mings, 2008.

19Morgante, J. D., R. Zolfaghari, and S. P. Johnson. A
critical test of temporal and spatial accuracy of the Tobii
T60XL eye tracker. Infancy 17:9–32, 2012.

20Partala, T., and V. Surakka. Pupil size variation as an
indication of affective processing. Int. J. Hum.–Comput.
Stud. 59:185–198, 2003.

21Picard, W., and J. A. Healey. Wearable and automotive
systems for affect recognition from physiology. Technical
report, MIT, 2000.

22Raymond, J. C. Dictionary of Psychology. New York:
Routledge, 1999.

23Shi, Y., N. Ruiz, R. Taib, E. Choi, and F. Chen. Galvanic
skin response as an index of cognitive load. In: Proceeding
of Computer–Human Interaction conference on Human
Factors in Computing System, 2007, pp. 2651–2656.

24Siegle, G. J., S. R. Steinhauer, and M. E. Thase. Pupillary
assessment and computational modeling of early and sus-
tained processing on the Stroop task in depression. Int. J.
Psychophysiol. 52:63–76, 2004.
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