Poster: Real-Time Gesture Detection for Multi-Touch Devices

Francisco R. Ortega*
Florida International University
Malek Adjouadi®
Florida International University

ABSTRACT

We are motivated to seek a fast and accurate multi-touch gesture de-
tection algorithm that can be utilized for 3D navigation. Our current
approach tries to solve the online gesture detection for multi-touch
devices for translation, rotation and zooming gestures.

Index Terms: H.5.2 [Multi-Touch Gesture Detection]: Real-Time
Gesture Detection Algorithm—Multi-Touch

1 INTRODUCTION

Our work is inspired by previous contributions such as the $1
algorithm[8] and the Rubine algorithm[5]. The contributions men-
tioned have shown that simple approaches can be quite effective
and easier to implement in contrast to Hidden Markov Models[6]
or neural networks[4]. The primary motivation is to find a fast al-
gorithm for a high-demanding 3D navigation system using multi-
touch devices. The Rubine algorithm[5] showed specific features
that can be used for stroke recognition and Wobbrock et el.[8]
demonstrated an efficient approach to detect different gestures. Our
goals are also aligned with the problem statement written by Greg
Hamerly! for interaction with a generalized multi-touch system.
We believe that our work can contribute to the development of real-
time solutions for the algorithm development of the post-WIMP era.
Particularly, the use of real-time gesture detection for 3D synthetic
worlds. For further review of the state of the art, please see[8] and
for a in-depth study of post-WIMP devices and interfaces, see[1].

2 EXPOSITION

We are currently developing our multi-touch system using C++11
with Microsoft Visual Studio 2012 and running on a Windows 7 64-
bit machine. We are also using the Parallel Patterns Library from
Microsoft to keep all data structures thread safe. For the touch data,
we use the raw data provided by the windows touch drivers[3]. The
raw touches they gives us the flexibility to test different multi-touch
gesture recognition approaches and build new gestures.

We use raw touch data[3] (e.g., Windows, iOS) to capture data
points stored in a set called trace. A trace starts when a user
presses with one finger and continues until the user removes the
finger from the device. Figure 1, shows a rotation gesture with two
fingers in our test system. This constitutes two traces. Each trace
has a a unique identifier (id) and contains a set of points with 2D
Coordinates (x,y) and a timestamp t, for each point. The general
events provided are the initial touch of a trace (TOUCHDOWN),
the translation of the trace (TOUCHMOVE) and the end of the

*email: forte007 @fiu.edu
fe-mail:barretoa@fiu.edu
*email: ndr@acm.org
$email: adjouadi@fiu.edu
Temail: fabya001 @fiu.edu

'http://cs.baylor.edu/~hamerly/icpc/qualifier_
2012/
IEEE Symposium on 3D User Interfaces 2013
16-17 March, Orlando, FL, USA
978-1-4673-6098-2/13/$31.00 ©2013 |IEEE

Armando Barreto'
Florida International University

Naphtali Rishe*
Florida International University
Fetemeh Abyarjool
Florida International University

touch (TOUCHUP). A trace point structure contains coordinates x
and y, timestamp ty, count ¢ (indicating how many continuos points
are found in the same location), boolean p (indicating if the touch-
point was already processed) and the last timestamp ty. This we
call TOUCHPOINT. We also keep an additional data structure with
the name of TRACE. This contains id for the unique identifier. The
initial timestamp t; for the trace, the final timestamp t; and boolean
d to see if the trace is ready for deletion. For additional informa-
tion on how Windows 7 handles the touch driver, please see [3].Our
approach concentrates in the online gesture detection using multi-
touch devices. However, we believe that our approach combined
with finite state machine will yield a better result.

It is important to keep the touch events and gesture detection in
different thread processes[7]. Therefore, all the active traces are
stored in a concurrent hash map and a concurrent arraylist (vector)
to keep the set of touch points of a given trace. Once data points
are processed, they can be safely removed. The advantage to have
them in different threads (other than speed) is to have a real-time
approach to gesture detection. We define a buffer with a maximum
size of windowSize. This means that when the buffer is full, it
needs to perform the gesture detection while still allowing touch
events to execute. In our experiment we have found that the win-
dowSize works fine when it has 50 data points for each trace. This
means, that a four-finger gesture will need a windowSize of 200.

N/

Figure 1: Rotation Gesture

TOUCHDOWN is the initial event that fires when a trace begins.
This means that a user has pressed a finger in the multi-touch de-
vice. The event fires for each new trace. There is room to further
improve the performance of the gesture detection system by creat-
ing additional threads for each trace. The first trace is stored in the
vector vtrace, during this event. The vector is kept in a hash map
mtrace, which contains a collection of all traces. The timestamp
for ty and #; will be identical for the first trace.

As the user moves across the screen (without lifting the fingers)
the event that fires is TOUCHMOVE (Listing 1). In line 3 of Listing
1, we invoke a method called removeNoise passing the given trace
and the previous traces. This algorithm should be modified accord-
ing to how the “noise” is defined. We consider that “noise” occurs
if a new touch point is within £d of a previous point where d is a
pre-calculated value depending on the size of the screen (e.g., 2). If
the noise is true, then we just update the counter ¢ and the times-
tamp t; for this trace as shown in lines 5-6. Otherwise, we add this

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 23,2020 at 20:48:27 UTC from IEEE Xplore. Restrictions apply.

167

168

touch point to the vector. At the end of the procedure, in line 13,
we update the map (Note that depending on the implementation and
language, you may skip this last step).

Algorithm 1 TOUCHMOVE

1: trace + TRACE(id)

2: vtraces < mtraces. find(id)
3: noise < removeNoise(trace,vtrace)
4: if noise then

5: trace.c+ =1
6.

7

8

: trace.t] = trace.requestTimeStamp()
: else
: trace.ty < trace.requestTimeStamp()

9: trace.ty < viraces|length—1].1g

10: vtrace <— mtraces.getValue()

11: vtrace.push_back(traces)

12: end if

13: mtraces.insert (id,vtrace)

The final event is when the user removes the finger. Since the
gesture detection algorithm may still be running, the data is marked
for deletion only. Once Algorithm 2 finishes, the process can safely
delete all the data touch points that have been used.

Algorithm 2 detects translation(swipe), rotation, zooming
(pinch). Once the buffer is full, we split a window of touch data
into two lists named top and bottom. This creates an initial and a
final snapshots to work with.

Algorithm 2 requires pre-computed values, grip points and av-
erage touch points(described below) before it can execute. The
choices to pre-compute the values can be done in the TOUCH-
MOVE event or by firing a separate process before Algorithm 2
starts. If the latter is chosen, then a GPU approach is recommended.
For now, we are using the touch events for the pre-computed values.
We have stored the values for Algorithm 2 in the top and bottom
structures respectively.

The features identified in each gesture are grip, trace vector,
spread and angle rotation. A grip is the average of all points in
each top and bottom lists. A trace vector is a trace minus the
grip, as shown in Algorithm 2 lines 11 through 14. The spread
is calculated in lines 15-18 of Algorithm 2 as the average distance
between the grip point and the touch vector. The angle rotation
is given by the average of the angles obtained by atan2[2], which is
the angle between the final touch vector and the initial touch vector.

To select the correct gesture the algorithm finds the highest value
from the three distance variables: swipeDistance, rotDistance, or
zoomDistance. The definition of the swipe distance is the spread of
the first trace and the grip. The rotate distance is calculated to be
the arc length, which is given by the the radius of the swipe distance
and the average angle shown in lines 19-20 of Algorithm 2.1t is
important to note that atan2[2] values range between £7x. This is
why there is a factor of 2 in line 26. Finally, the zoom distance is
defined as the difference between the average final spread distance
and the average initial spread distance.

3 CONCLUSION

We have shown, in agreement with previous contributions[5, 8],
that gesture detection can be solved without complex methods like
Hidden Markov Models or neural networks. Our approach finds,
in real-time, rotation, translation and zooming gestures for multi-
touch devices.

Our future work will attempt to develop mechanisms for detec-
tion of new gestures in real-time. We also expect to look into GPU
computing and Cloud computing to find innovative ways to perform
a big set of faster recognition of gesture from a larger set. Our final

Algorithm 2 GestureDetection

top < traces.getTop(windowSize)

: bottom < traces.getBottom(windowSize)
. tGrip.x < top.getGrip.x

: tGrip.y < top.getGrip.y

. bGrip.x < bottom.getGrip.x

: bGrip.y < bottom.getGrip.y

: spread.x + iTrace[l].x — iGrip.x

: spread.y < iTrace[l].y —iGrip.y

. swipeDistance <+ sqrt(spread.x2 + spread.yz)
: for r = 1 to traces.Count do

i.x + tTrace[t].x—tGrip.x

i.y < tTracelt].y —tGrip.y

f.x « bTracelt].x — bGrip.x

f-y < bTracelt].y — bGrip.y

di+ squ‘(i.x2 +iy?)

df < sqrt(f. x>+ f.y%)

iSpread < iSpread + di

fSpread < fSpread +df

angle < atan2(f.y —i.y, f.x—i.x)
rotAngle < rotAngle + angle

: end for

: iSpread + iSpread [traces.Count

: fSpread + fSpread /traces.Count

: rotAngle < rotAngle/traces.Count

. zoomDistance < fSpread — iSpread

. rotDistance < rotAngle/360.0 x 2 x 1t x swipeDistance
: return Gesture With Highest Distance

o B N I S S

T I T T T S g U g
NQLRERXNTO0VRXID N RPN OO0

goal is to use our gesture detection method with 3D worlds for nav-
igation purposes. We will compare our method with other gesture
detection algorithm.

ACKNOWLEDGEMENTS

This work was sponsored by NSF grants HRD-0833093, and CNS-
0959985. Mr. Francisco Ortega is the recipient of a GAANN fel-
lowship, from the US Department of Education, at Florida Interna-
tional University.

REFERENCES

[1] D. A Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. 3D user
interfaces: theory and practice. Jan. 2005.

[2] F. Dunn and I. Parberry. 3D Math Primer for Graphics and Game De-

velopment, 2nd Edition. A K Peters/CRC Press, 2 edition, Nov. 2011.

Y. Kiriaty, L. Moroney, S. Goldshtein, and A. Fliess. Introducing Win-

dows 7 for Developers. Microsoft Pr, Sept. 2009.

[4] J.Pittman. Recognizing handwritten text. In Human factors in comput-
ing systems: Reaching through technology (CHI ’91), pages 271-275,
New York,NY, 1991.

[5] D. Rubine. Specifying gestures by example. ACM SIGGRAPH Com-
puter Graphics, 25(4):329-337, 1991.

[6] T. Sezgin and R. Davis. HMM-based efficient sketch recognition. Pro-
ceedings of the 10th international conference on Intelligent user inter-
faces (IUI °05), 2005.

[71 A. Williams. C++ Concurrency in Action: Practical Multithreading.
Manning Publications, 1 edition, Feb. 2012.

[8] J. Wobbrock and A. Wilson. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. Proceedings
of the 20th annual ACM symposium on User interface software and
technology (UIST ’07), 2007.

3

—

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 23,2020 at 20:48:27 UTC from IEEE Xplore. Restrictions apply.

